import json
import pandas as pd
from matplotlib import cm

df = pd.read_csv('data/european_mayors.csv')
df_subset = df[['country', 
                'city_lon', 'city_lat', 
                'birth_city_lon', 'birth_city_lat', 
                          'birth_city_lat':'lat1'}, inplace=True)

# If we want to filter our data set for a single country
#df_subset = df_subset[df_subset['country'] == 'Germany']

# Choose a colormap
colors = list(cm.tab10.colors)
colors.pop(7) # remove gray color
colors.pop(5) # remove brown color

# Ordering of countries for the colors (sorted by longitude)
country_list = ['Wageningen University & Research', 'Universiteit Leiden', 'Hoge Raad der Nederlanden', 'Croatia', 'Cyprus', 'Czech Republic',
    'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Hungary',
    'Iceland', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta',
    'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania', 'Slovakia',
    'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'United Kingdom']

# Create a color mapping for each country
n_countries = len(country_list)
country_colormap = {}
for i, country in enumerate(country_list): 
    color = colors[i % len(colors)]
    color = [int(c * 255) for c in color]
    country_colormap[country] = color

# Create a list of arcs
arcs = []
for i, (country, lon0, lat0, lon1, lat1, distance) in df_subset.iterrows():
        'source': [lon1, lat1],
        'target': [lon0, lat0], 
        'color': 100,
        'distance': distance
with open('data/arcs.json', 'w') as f:
    json.dump(arcs, f)

# The file can be stored directly in the visualization folder
#with open('../wikidata-mayors-visualization/arcs.json', 'w') as f:
#    json.dump(arcs, f)
  File "<ipython-input-9-298ae4a6f201>", line 38
    if (country_colormap[country]) {country_colormap[country] = color } else country_colormap[country] = 100
SyntaxError: invalid syntax